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Abstract— A method for estimating compliance properties
of objects in the workspace of remotely located robotic ma-
nipulators is presented herein. An architecture that supports
decoupled remote teleoperation is briefly described, and used
to control the manipulator during recovery of an object’s
compliance parameters. These parameters are based on the
Kelvin-Voigt contact model and estimated in simulation as
well as experimentally using offline and online estimation
techniques. A comparison of the estimation techniques reveals
that the proposed RANSAC-based technique is better suited to
compliance recovery over existing methods, even in the presence
of sensor noise. The recovered parameters are used to update
a reconfigurable compliance object in simulation to closely
match that of the real-world object, thereby enabling the use
of realistic haptic feedback during remote teleoperation.

I. INTRODUCTION

The field of haptics encompasses a broad swath of appli-

cations employing force-reflective user interfaces. In areas

such as minimally invasive surgery, remote teleoperation,

and robotic object manipulation, realistic haptic feedback can

assist the operator in successful completion of a given task.

Haptic feedback in remote teleoperation environments is

complicated by the permanent influence of transmission

latencies and communication bandwidth limitations between

the master controller and the slave executor [1]. This not

only limits the abilities for direct control of the slave, but it

also complicates the task of force reflection. To circumvent

this problem, a different paradigm for bilateral teleoperation

that uses a virtual reality simulation environment has been

proposed recently [2]. It decouples the master and slave

sides by letting the user execute the desired actions in the

simulation environment and then transfers the operator’s

intent to a semi-autonomous slave instance that executes the

movements.

To receive haptic feedback within this architecture, it is

required to estimate the compliance properties of objects that

are in the real robot’s interaction space. These compliance

parameters can then be used to update those of the object in

the simulation environment (master), allowing haptic forces

to be rendered such that they are reflective of the real world’s

mechanical properties.

The focus of this paper is the dynamic recovery of com-

pliance properties of remote objects using the architecture

described above. During the parameter estimation, the exam-

ined object is subject to controlled forces using an admittance

scheme to avoid damaging interactions. While in contact,
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position, velocity, and force readings allow characterization

of the object.

The main contributions of this manuscript are as follows.

Two different offline methods for estimating the parameters

of the Kelvin-Voigt [3] contact model have been developed,

one of which uses RANSAC [4] to minimize noise sen-

sitivity. To test these methods, data was gathered both in

a comprehensive simulation as well as experimentally. The

simulation encompasses closed loop force control of the ma-

nipulator, as well as a variable compliance object. A detailed

analysis of algorithmic performance is performed for a range

of compliance parameters. To evaluate the accuracy of the

estimators in the presence of disturbances, a noise sensitivity

analysis is performed and the results compared to the popular

Self-Perturbing Recursive Least Squares (SPRLS) online

estimation method. This analysis will provide guidance on

the appropriate application cases of the evaluated methods.

The rest of the paper is organized as follows. Related

literature on compliance estimation is reviewed in Section II.

Section III presents a system architecture supporting teleop-

eration with force feedback and a hybrid control scheme for a

serial-link robot arm is detailed in Section IV. Section V lays

out different compliance parameter estimation procedures.

Relevant experimental results (both simulation and real-

world) are analyzed in Section VI and the paper is concluded

in Section VII.

II. BACKGROUND

Since this paper focuses on the compliance estimation

of unknown objects, this background section provides an

overview of prior research in that area. For abstracting

contact dynamics, commonly either the linear Kelvin-Voigt

model [3] or the non-linear Hunt-Crossley model [5] are

employed. In the Kelvin-Voigt model the relationship of

penetration depth to encountered force is expressed by a

parallel spring / dashpot system, whereas the Hunt-Crossley

model extends this relationship to a non-linear one.

Generally, estimation algorithms for these models are

based on one of two approaches: Recursive Least Squares

(RLS) estimation and its variants or adaptive control meth-

ods. The authors of [6] use an RLS estimation for re-

covering stiffness and damping environment parameters for

the Kelvin-Voigt model. RLS was also employed by [7] to

estimate the non-linear parameters for the Hunt-Crossley

model. In general, RLS is only able to reliably estimate

linear models, but the authors circumvented that problem by

using two interconnected RLS estimators linked via a crossed

feedback loop. A different approach to linearization is elab-

orated in [8]. Using the natural logarithm and assuming
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that penetration speed and sensor noise are small, the Hunt-

Crossley model can be linearized in the parameters. These

are subsequently recovered by the Exponentially Weighted

Recursive Least Squares (EWRLS) algorithm. The authors

show superior estimation performance compared to [7].

The authors of [9] use the same linearizing method,

but employ a modified RLS method called Self-Perturbing

Recursive Least Squares (SPRLS) to estimate the Kelvin-

Voigt and Hunt-Crossley models in parallel. This hybrid

approach shows very promising results and switches between

the models based on the estimated environment stiffness.

SPRLS is also employed for contact impedance estimation by

[10] in the framework of a teleoperation scheme. The relative

popularity of SPRLS in recent years can be explained by the

fact that in a direct comparison between RLS, EWRLS, and

SPRLS in [11], the latter was confirmed to be most resistant

to noise disturbances. In Section VI-C, this noise-resistance

claim will be tested against other methods described here.

Another family of compliance estimation methods are

control-based approaches that tightly integrate the environ-

ment estimation component in an open- or closed-loop robot

control system. In general, this control-centric approach

simplifies the stability analysis of the resulting manipulation

system.

Seraji et al developed a scheme for stiffness and damping

estimation with an indirect adaptive control approach [12].

The authors show the performance improvement of a force-

tracking impedance controller with the added online esti-

mation component. [13] extends this work by evaluating the

influence of persistent excitation on the parameter estimation

and how haptic feedback of the excited signal can be avoided.

[14] uses a model-reference adaptive control scheme to

provide environment estimates and constant force tracking,

but the paper limits the environment parameters to pure

stiffness.

Good comparisons between the different estimation meth-

ods can be found in [15] and [16].

The focus of this paper will be on the development and

analysis of algorithms for the estimation of Kelvin-Voigt

parameters. Due to the popularity of RLS-based methods,

the performance of one of its representatives in the presence

of noise will be used for comparison.

III. ARCHITECTURE

Receiving direct haptic feedback while controlling a re-

mote robot is impeded by inherent latency and bandwidth

issues, which are characteristic of any teleoperation system.

Figure 1 illustrates the architecture that uses a simulated

virtual environment to decouple the master operator from

the slave robot. This architecture relieves the complexities

of implementing a direct control scheme in the presence

of variable time delays and presents the user with better

response time and system transparency. In essence, a human

operator works in a virtual environment, consisting of a

robotic arm and a re-configurable compliance object, to plan

and execute a series of robot motions. Only specified target

configurations are transmitted to the slave instance, which

displays adaptability (semi-autonomy) in execution of these

commands. While not the essence of this manuscript, a

variation of this architecture is described in detail in [2] and

is important for tasks that require remote manipulation that

can be enhanced using haptic feedback.

The slave-instance uses one of the developed methods to

estimate the properties of compliance objects at its end, and

passes these values back to the master, which in turn updates

the compliance properties of the object in the master-side

virtual simulation. While this allows realistic force-feedback

to be received via a Phantom Omni or similar device,

the experiments in Section VI only focus on compliance

estimation without transmitting these forces back to the user.

Fig. 1. Components of the decoupled haptic feedback architecture

IV. CONTROL

A serial-link remote robot arm (slave-side) was equipped

with a single-axis force sensor at its end effector and actuated

by DC motors. Torque sensors at the joints were used to

measure the commanded control signal while rotary encoders

were used for joint position feedback. Coordinate frames for

the serial-link robotic arm are assigned using the Denavit-

Hartenberg, or D-H convention.

A. DH Parameters and Kinematics

The slave side robot is required to probe the object in

its space on receiving a position command from the master.

The robotic arm attempts to maintain the exact orientation

at which the end effector makes contact with the object on

the master side. For the chosen 3-link serial manipulator,

redundancy in the manipulator configuration allows us to

compute the desired angles to achieve a target [xt yt]
T using

closed form inverse kinematics solutions.

B. Manipulator Dynamics

The Recursive Newton Euler (RNE) method was used

to calculate the joint torques from the motion of the ma-

nipulators that make up the system, and included gravity

compensation. In general, the torque on a joint i is calculated

as



τi = Ni + τi+1 +
i fi,yCi +

i fi+1,y(Li − Ci) (1)

where Ni is the moment of inertia of link i about its

rotation axis, τi is the torque on the ith link, ifi,y is the

y-component of the force exerted on link i by link (i − 1),
ifi+1,y is the y-component of the external force acting on

link (i), Ci is the position of the centroid of link i from

joint-frame i and Li is the length of link i.
Serial link manipulators are notorious for their coupling

effects that are more pronounced when the masses of the

links that make up the system are significant. A computed

torque controller with a secondary PID controller for dis-

turbance rejection was therefore implemented for accurate

position control.

C. Manipulator Admittance

According to [17], contact tasks are those in which a

robot grasps, pushes, or works against a work piece. There

is a dynamic interaction between the manipulator and the

object being probed, invoking a change in the response of the

system to its actuator. Impedance Control attempts to imple-

ment a dynamic relationship between manipulator variables

such as force and end point position, rather than controlling

each of these variables alone [17]. This relationship can be

described assuming spring-damper properties for the object

being manipulated. i.e. Fact = k(xd − xt) + c d
dt
(xd − xt)

where x = xd − xt is the displacement of the end effector

after contact with the object in its workspace. In admittance

control, the response to a measured force is a change in

position. To achieve this, an external position feedback

control loop is implemented around the force controller as

shown in Figure 2. A dynamic relationship between the

end-effector actual and desired positions and forces is thus

enforced.

Fig. 2. The hybrid control system of admittance and computed torque
control. Prior to contact, a position demand Xpre is passed to the inverse
kinematic block. The output from the inverse dynamics controller and the
secondary PID controller for disturbance rejection (from external forces
Fext) are summative and are output to the system. Xdes is the same
as Xpre during this stage. Once contact is established, the error between
the desired force Fdes and Fact is passed through the admittance block.
This results in a new desired position Xdes in response to the force. τ is

the computed torque for the system and [θ, θ̇, θ̈] are the angular position,
velocity and accelerations required to achieve the desired path.

The controller is hybrid in nature, transitioning between

non-contact and contact states in a fast and stable manner,

as required for a task such as compliance estimation. The

desired admittance control law outputs a change in position

in response to a force, prior to which the computed torque

controller is used for path planning as shown in Figure 2.

V. PARAMETER ESTIMATION

Object compliance estimation in haptic teleoperation sce-

narios helps provide the user with an adequate level of

transparency. Though the architecture presented in Section III

alleviates the direct control problem by decoupling the

master and slave instances through a simulation layer, the

question of how haptic feedback can be treated in such a

scenario remains.

To ease the estimation process, it is assumed that the

probed material can be approximated by a parallel spring-

damper system (see Section IV-C), also sometimes referred

to as Kelvin-Voigt contact model [3]. In this case, the

spring constant k and the viscous damping coefficient c fully

describe a linear relationship between penetration depth x of

the end effector, its velocity ẋ and the encountered force F :

F = kx+ cẋ.

To estimate k and c, it is assumed that data points of

end effector position, velocity, and contact forces can be

gathered at fixed time intervals. The end effector position

can be either directly measured through external tracking

or derived through forward kinematics; its probing velocity

can be found either by position differentiation or direct

measurement. Contact forces are measured by a force sensor

mounted on the end effector.

After the master operator defines a set of probing points,

the slave executes the probing action semi-autonomously.

Once contact with the surface has been established, the

admittance controller ensures that a controlled force is ex-

erted on the object, without damaging it. Since the damping

coefficient c can only be estimated through varying end

effector velocity, the same probing motion will be executed

at multiple velocities.

With the gathered sample points, the following linear

relationship can be established:

F = A
[

k c
]T

(2)

It is assumed that there are n samples of the end effector

displacement x, its velocity ẋ and measured force Fact. Then

F is a (nx1) matrix of all force readings and A is a (nx2)

matrix of the measured displacements and velocities. The

unknown values in this equation are the spring constant k
and the viscous damping coefficient c.

If n > 2, this system is over-defined and an approxi-

mated solution has to be found. Commonly, a system like

Equation (2) is solved in the least-squares sense by using

the pseudo-inverse. This method will be referred to as LSQ

in the rest of this paper and serves to establish a baseline

performance.

In addition, a RANSAC [4] scheme has been implemented

that provides greater robustness to sample outliers and rejects

degenerate solutions. In the presence of noise, RANSAC

effectively samples different subsets of the gathered data and

evaluates a least squares fit for each subset. The recovered



parameters are then tested against the whole data set and

inliers and outliers are identified. Although RANSAC has

been used extensively in a variety of application cases, to

our knowledge this paper is the first to evaluate a RANSAC-

based estimation method for object compliance.

Both LSQ and RANSAC are offline methods since they

require a complete set of force, position, and velocity read-

ings.

VI. RESULTS

Accuracy and noise resistance are paramount metrics in

the evaluation of a compliance estimation algorithm. To

validate the proposed methods in terms of these criteria,

simulated as well as real experimental results were compared

for LSQ, RANSAC, and Self Perturbing Recursive Least

Squares (SPRLS), a popular online estimation method. The

noise disturbance analysis in particular provides useful in-

sights into the choice of an appropriate estimation algorithm.

In addition, the effectiveness of the computed torque

controller on the slave robot was evaluated.

A. Controller Performance in Simulation

The measured torques from sensors mounted at the joints

were compared to the commanded joint torques during the

execution of the contact task on the slave side. Figure 3a

reveals that the measured torque follows the commanded

torque very closely. This verifies the inverse dynamics model

used during the experiment, which is significant since the

approach is model-based, with errors propagating through the

system resulting in instability. Additionally, torque at the first

joint is much higher than that of the second joint, which is as

expected due to the inertial loading of the serial manipulator.

Figure 3b shows the transition between non-contact and

contact states when the end effector encounters the com-

pliance object. The control scheme exhibits minimal spikes

in the control torque on all the joints, thereby ensuring

its stability. A constantly increasing magnitude in torque is

noticed on all joints due to the increase in end effector force

as the compliance object is compressed.

B. Parameter Estimation in Simulation

Both master and slave instances are represented by a

virtual 3 DOF robot arm in simulation. The slave arm

has a different kinematic configuration than the master arm

to demonstrate the master-slave decoupling. An object of

unknown spring-damper properties is part of the simulated

scene and is probed by the arm. Once a target point on the

object surface is specified by the user, it is transmitted to the

slave, which executes the necessary movements to achieve

this target.

The end effector on the simulated slave robot arm is

lowered to the object surface at three different velocities (150
mm/s, 90 mm/s and 60 mm/s). Data points are gathered

and stored at regular intervals from point of contact until a

maximum end effector force of 10 N is achieved. A typical

set of force vs. displacement readings for one of these tests

is shown in Figure 4a. Even though this data is gathered in a

simulated environment, it is far from noise-free and provides

good test cases for the estimation algorithms.

In the virtual simulation environment, the spring constant

k and the viscous damping coefficient c of the test object are

varied. Each permutation of k and c is tested 3 times and the

achieved results are averaged. The absolute difference of the

resulting estimate and the ground truth value is our measure

of performance and will be denoted simply as mean error.

Two offline methods are used to estimate these parameters:

Least-Squares (LSQ) and RANSAC. The LSQ method has no

free parameters. For RANSAC, the inlier threshold is chosen

as 0.01 and a minimum number of 5 samples is required for

a complete subset.

Results of estimating c for different spring constants

are shown in Figure 4c. Figure 4b shows a similar plot

for estimating k for varying damping coefficients. Overall,

RANSAC provides a significant advantage over the simpler

LSQ solution, particularly for spring-damper systems where

the damping coefficient c is significantly greater than 0.

In all RANSAC test cases, k is recovered to within about

6.5% of its ground truth value and c within about 18.4%
of its real magnitude, whereas the comparable numbers for

LSQ are 20.6% and 29.5%.

C. Parameter Estimation under Simulated Noise

In any realistic scenario involving a physical slave robot

arm, noise disturbances of the sensor signals are expected. In

particular, force sensors are well known to routinely exhibit

non-linear measurement behavior and are prone to noise

disturbances. Any practical estimation of object properties

needs to be sufficiently robust to tolerate these problems.

Force measurements in simulation were therefore disturbed

by Gaussian-distributed noise with zero mean and a standard

deviation of 0− 10% of the force magnitude.

In addition to the previously discussed methods, this

section also analyzes how noise affects the results of the

popular SPRLS estimation method. SPRLS is an online esti-

mation method that has gained popularity within the contact

estimation community and achieved good results in [9], [10].

It is based on a Recursive Least Squares (RLS) estimator, but

perturbs the process covariance matrix if the estimation error

gets too small. According to [11] this process perturbation

leads to superior process tracking and noise disturbance

rejection compared to other RLS derivatives. The comparison

of this online method against the presented offline methods

is arguably lopsided, but provides useful insights into the

upper limits of performance and estimation behavior in the

presence of noise. SPRLS has multiple free parameters that

need to be tuned for a specific noise environment. In the

following tests, these parameters were optimized for an

average noise case and then kept constant for all other test

runs. Following the notation in [9], the design constant is

chosen as β = 20 and the sensitivity gain is set to γ = 1.

SPRLS was run online for every sample point, but only the

last estimate was used for the algorithmic comparison.

Figure 4d shows the mean error of the estimates for k
and c. Interestingly, the performance of LSQ as well as the
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Fig. 3. Controller performance - Measured and Commanded Torques

RANSAC estimation deteriorates, but both estimates stay

within a reasonable band around the ground truth of k = 500
and c = 100. RANSAC does provide better noise rejection

behavior, especially at higher noise magnitudes. SPRLS

is the worst-performing algorithm and shows considerable

divergence from the true value.

The good performance of RANSAC confirms the obser-

vations in Section VI-B, but the inferior results of SPRLS

need to be explained. It seems that the perturbation term is

the algorithm’s weak point when noise tolerance is important.

Initially introduced to allow the filter to react more rapidly

to setpoint changes, the perturbations also make it more

susceptible to noise in the input data. As noted by [11], the

correct parameters for the SPRLS method are dependent on

the actual material and noise characteristics, thus requiring

careful tuning for each application instance. To confirm this,

a separate test was executed with both β and γ being set to 0.

In this case, the performance of SPRLS is comparable to the

LSQ results. If SPRLS is employed as estimation method,

these results advise caution in the choice of parameters,

depending on the expected noise environment.

It should be noted that the presented RANSAC method has

a limited number of parameters that are held constant across

all experiments in this paper. No case-specific adjustments

are necessary. Additionally, the remote compliance recovery

architecture presented herein is unaffected by the choice of

online/offline estimation method. This is because the master

can potentially receive an update after compliance properties

are confirmed. Tasks can now be executed on the master-side,

which a better reflection of the real world.

D. Parameter Estimation in Experiments

To test the presented methods on realistic objects, two

cubes of silicone rubber were molded. Through the use

of different molding compounds, the cubes differ in their

TABLE I

MECHANICAL PROPERTIES OF SILICONE RUBBER CUBES. THE SPRING

CONSTANT k IS ESTIMATED ACCORDING TO EQUATION (3).

Property Cube A Cube B

Width (mm) 75 75
Height (mm) 75 75
Depth (mm) 34 73

Young’s Modulus E (N/mm2) 0.24 0.76
Approx. Spring Constant k (N/m) 4812.78 7098.3

inherent compliance and will be denoted as Cube A and

Cube B (see photo in Figure 5). The manufacturer of the

rubber provides detailed specifications on its mechanical

properties, among them a value for the material’s Young’s

(elastic) modulus E. Within the elastic range of stresses, an

approximate value for the effective spring constant k can be

calculated as follows:

k =
EA0

l0
(3)

Here E denotes the Young’s (elastic) modulus of the used

cube, A0 is the area through which the force is applied,

and l0 is the original length of the object along the force

axis. In the case of Cubes A and B, l0 is their respective

depth, while A0 is approximated by the circular area being

affected by the end effector indentation. This calculation

yields an approximate value for the cubes’ spring constant,

but unfortunately there is no equivalent approximation for

their damping coefficients. It should be noted that these

values only provide rough guidance and do not constitute

ground truths, because individual material defects, the force

area approximation, and the neglect of damping properties

will lead to inaccuracies. The mechanical properties of the

cubes are summarized in Table I.
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Fig. 4. Parameter estimation results for different spring constants k and viscous damping coefficients c.

As in the simulation, the object is probed three times at

different velocities of 10, 20, and 50 mm/s. A uniaxial force

sensor is mounted on the end effector and is used to directly

record triplets of displacement, velocity, and encountered

force data. The input parameters for the estimation methods

are the same as in Section VI-B and VI-C.

Table II contains the estimated k and c values for the

three different algorithms. The retrieved spring constant k
lies in the expected value range (within 5%) returned by

Equation (3), with all three methods returning very similar

results. The estimates for the damping coefficient c differ

considerably between the methods, ranging from almost 0
to over 300, but without further investigation it is hard to

determine its true value.

Using results from both simulations and real experiments,

it has been shown that all three estimation methods can

successfully extract the spring and damping components of

the Kelvin-Voigt model. In terms of robustness against noise,

RANSAC exhibits superior performance compared to LSQ

and the online SPRLS method. This suggests that if the



TABLE II

ESTIMATION RESULTS FOR SILICONE RUBBER CUBES FOR THE LINEAR

LEAST-SQUARES (LSQ), RANSAC (RS), AND SELF-PERTURBING

RECURSIVE LEAST-SQUARES (SPR) METHODS, RESPECTIVELY.

Cube k (lsq) k (rs) k (spr) c (lsq) c (rs) c (spr)

A 5021.53 4939.1 5034.99 115.11 313.81 74.25
B 7424.5 7311.2 7259.26 84.02 119.2 4.39

application allows the use of an offline method, a RANSAC-

based estimator should be employed.

Fig. 5. A photo of the silicone cubes used in the experiments in Section VI-
D.

VII. CONCLUSION

In this paper, methods were presented that allow the

recovery of Kelvin-Voigt parameters through probing of a

compliant object. Both offline LSQ and RANSAC algorithms

were shown to reliably estimate these compliance properties,

but RANSAC showed superior performance through its abil-

ity to reliably exclude outliers in noisy measurement data.

In comparison, the widely used online SPRLS method

was shown to be very sensitive to noisy measurements and

required application-specific parameter tuning. This implies

that there is still room for improvement of existing online

estimation schemes, as they do not yet approach the noise

rejection ability and estimation accuracy of the offline meth-

ods.

In this work, the estimation methods were integrated into

a bigger system that uses a decoupled control paradigm

to allow user simulation-generated force feedback from re-

mote robotic manipulators. Semi-autonomous control of a

remotely located robotic arm using an admittance control

scheme allows users to recover compliance properties of any

objects located in its workspace, while ensuring exact force

control at the end effector. The above system implementation

lends itself to the use of an offline RANSAC-based estima-

tion for recovering compliance properties.

The superior performance of RANSAC warrants future

investigation into versions of the algorithm that allow online,

recursive execution. Incremental or preemptive RANSAC are

existing online variants, but their performance needs to be

evaluated for compliance estimation tasks. Furthermore, the

influence of different RANSAC parameters on the estimation

performance should be evaluated more thoroughly. Other

future work will involve recovering compliance parameters

for non-linear contact models, like Hunt-Crossley.
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